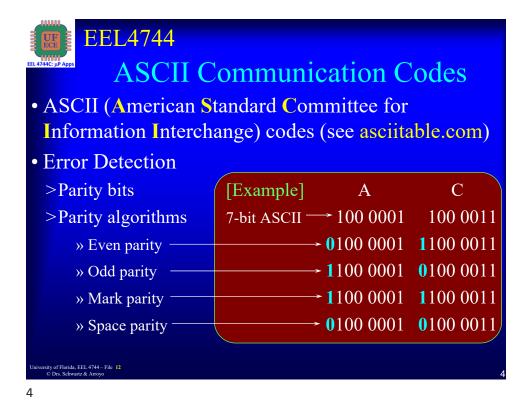

EEL4744


Serial Communication

- Serial Communication is the process of sending one bit at a time over a communication channel
 >As opposed to parallel communication (sending several bits at the same time)
- Some of the many types of serial communication and serial communication channels will be discussed

University of Florida, EEL 4744 – File 12 © Drs. Schwartz & Arroyo

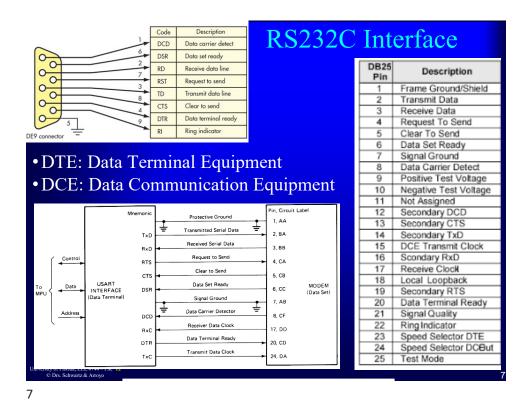
Serial Communication - Async

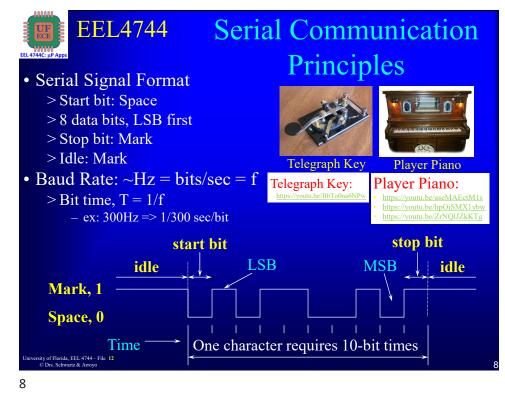
	ШЕ 744С: µР Аррз	EE	EL	47	44			ŀ	ASC		Ta kipe		(fro	m
	b ₇ b ₆ b ₅				→	→ →	0 0 0	0 0 1	0 1 0	0 1 1	1 0 0	1 0 1	1 1 0	1 1 1
	Bits	b₄ ↓	b₃ ↓	b₂ ↓	b ₁ ↓	Column Row ↓	0	1	2	3	4	5	6	7
		0	0	0	0	0	NUL	DLE	SP	0	@	P	•	р
		0	0	0	1	1	SOH	DC1	ļ	1	Α	Q	a	q
		0	0	1	0	2	STX	DC2		2	В	R	b	r
		0	0	1	1	3	ETX	DC3	#	3	С	S	C	S
		0	1	0	0	4	EOT	DC4	\$	4	D	Т	d	t
		0	1	0	1	5	ENQ	NAK	%	5	E	U	е	u
		0	1	1	0	6	ACK	SYN	&	6	F	V	f	v
		0	1	1	1	7	BEL	ETB	1	7	G	W	g	w
		1	0	0	0	8	BS	CAN	(8	Н	Х	h	x
		1	0	0	1	9	HT	EM)	9	1	Y	į	У
		1	0	1	0	10	LF	SUB	*	1	J	Z	j	Z
		1	0	1	1	11	VT	ESC	+	;	K	[k	{
		1	1	0	0	12	FF	FC	1	<	L	1	I	
		1	1	0	1	13	CR	GS	-	=	M]	m	}
		1	1	1	0	14	SO	RS	-	>	N	^	n	~
Un		1	1	1	1	15	SI	US	1	?	0	_	0	DEL

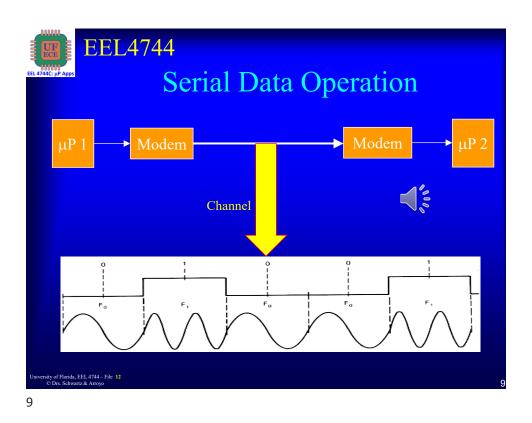
EEL4744 Serial Communication Principles

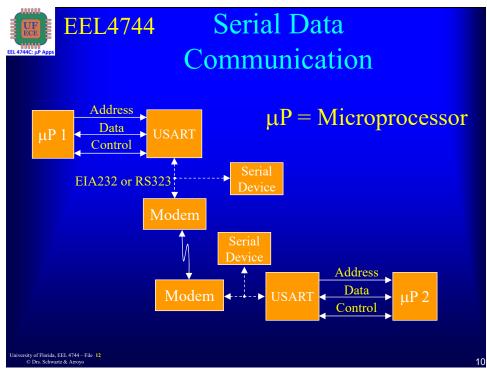
Serial Signals

>20mA current loop


- Use solenoid. (Ex: Teletype machine)
- It has greater immunity to interference from electrical noise than some voltage-level signal systems
- Logical 1 (20mA of current)
- Logical 0 (no current)

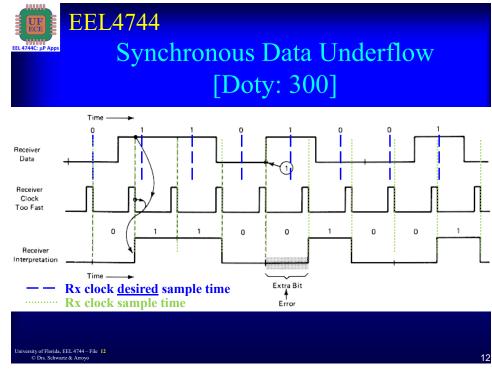

>RS-232 (EIA-232)

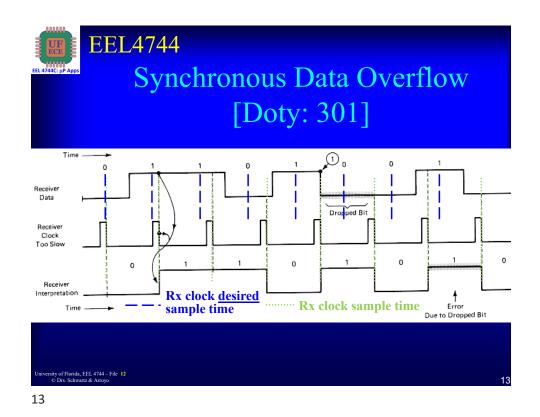

- Signal level: High ($+3 \sim +25$ VDC) & Low ($-3 \sim -25$ VDC)
- Using large nonzero voltages for each level provides better immunity to electrical interference
- Logical 0 (**positive** voltage)
- Logical 1 (negative voltage)

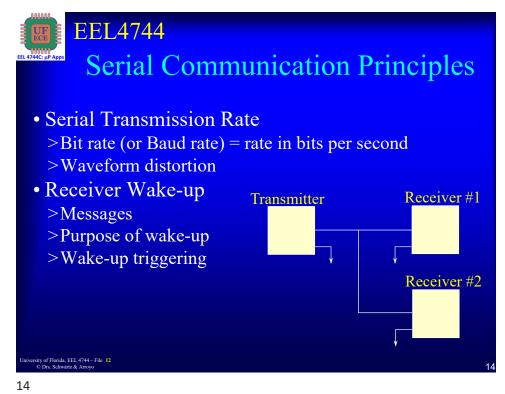

University of Florida, EEL 4744 – File 12 © Drs. Schwartz & Arroyo

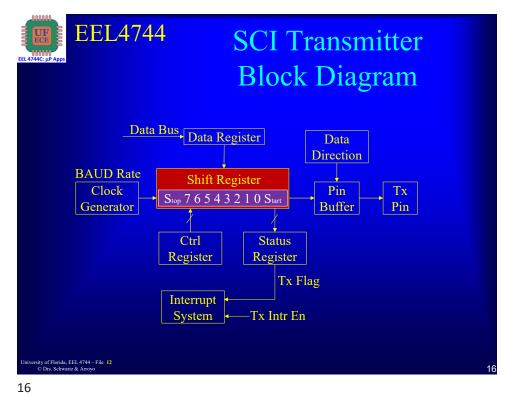
6

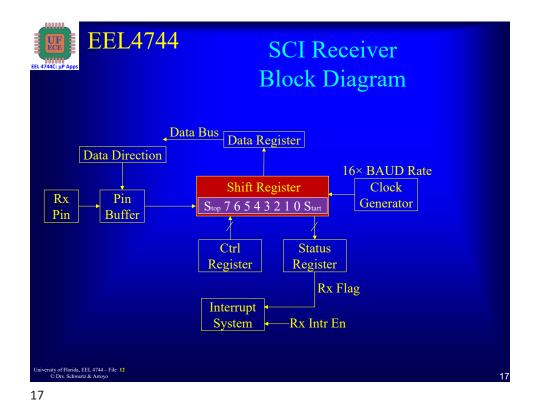


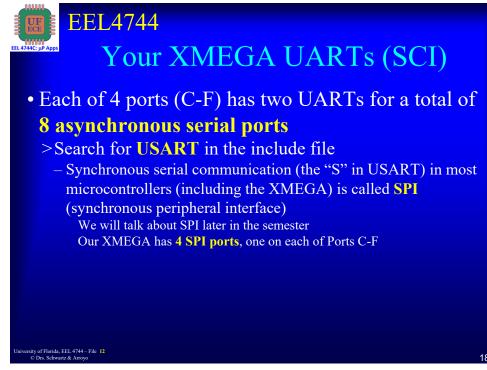


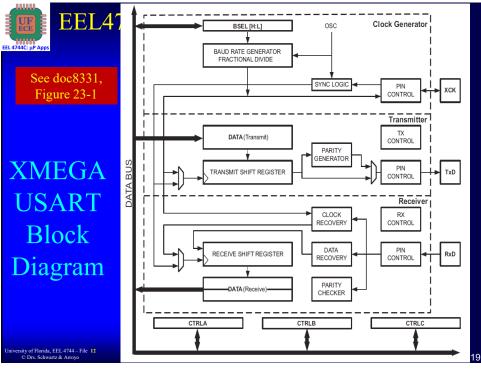



Serial Communication - Async



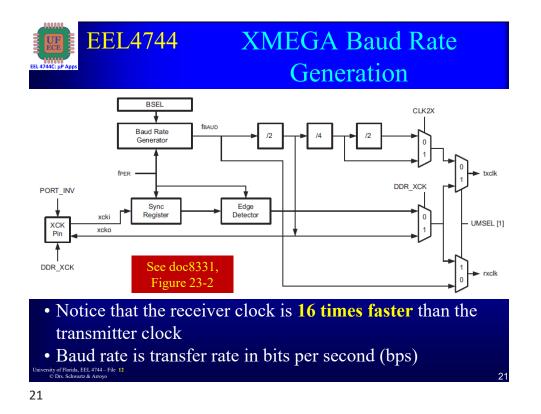

12

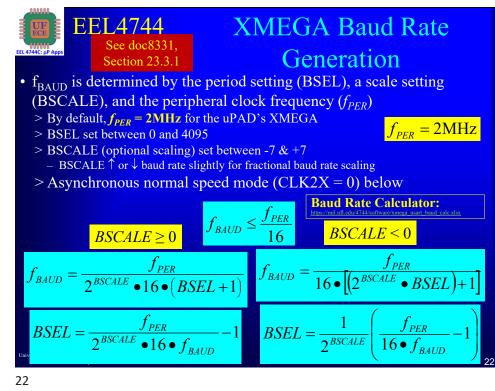




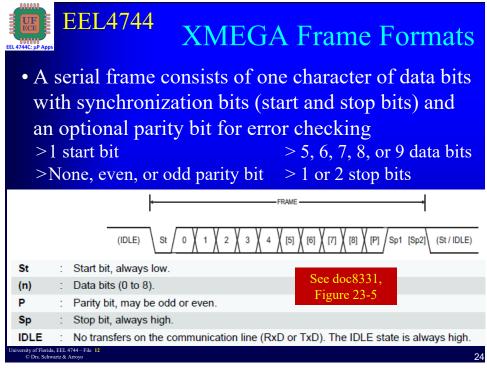
University of Florida, EEL 4744 – File 12 © Drs. Schwartz & Arroyo

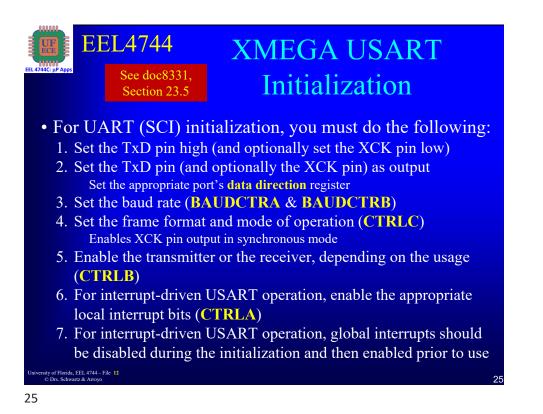
9

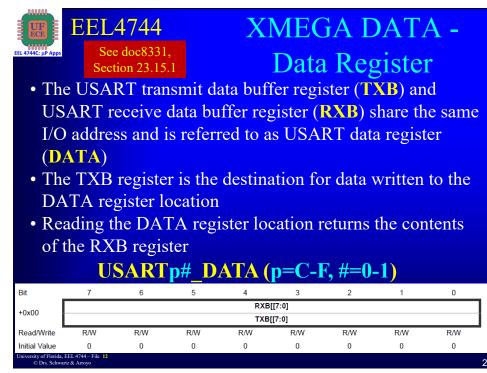

EEL4744

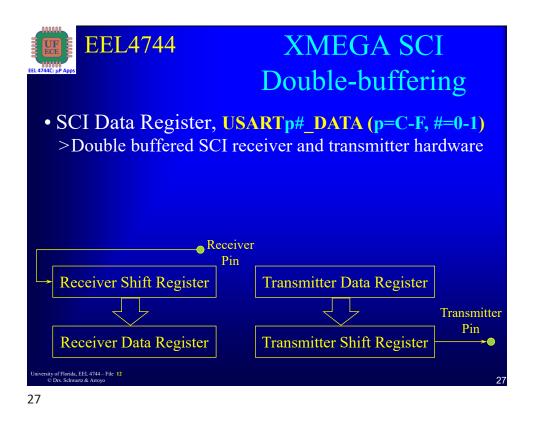

XMEGA Baud Rate Generation

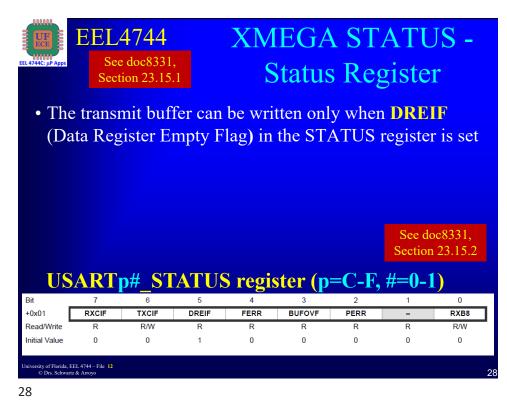
- The clock generator includes a **fractional** baud rate generator that is able to generate a wide range of USART baud rates from any system clock frequencies
- Can use baud rate generator **OR** an external transfer clock pin
 - >External transfer clock is **ONLY** used in synchronous mode

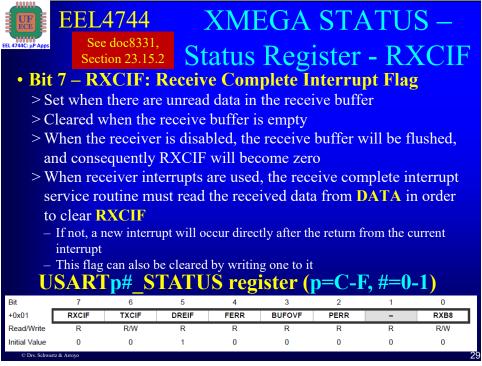

University of Florida, EEL 4744 – File 12 © Drs. Schwartz & Arroyo

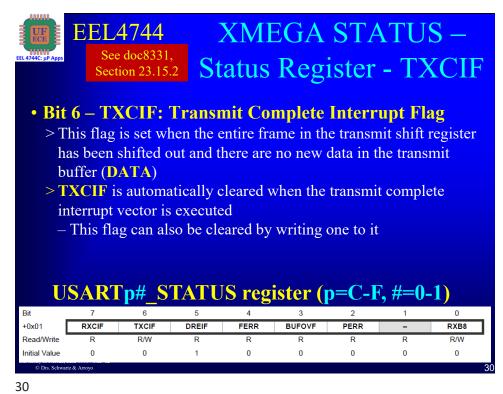

20

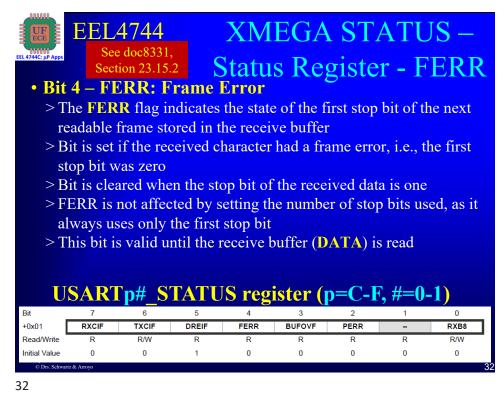


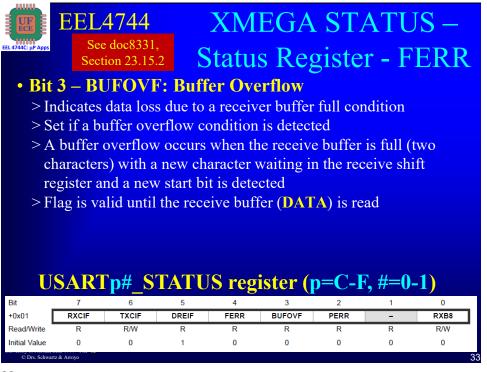


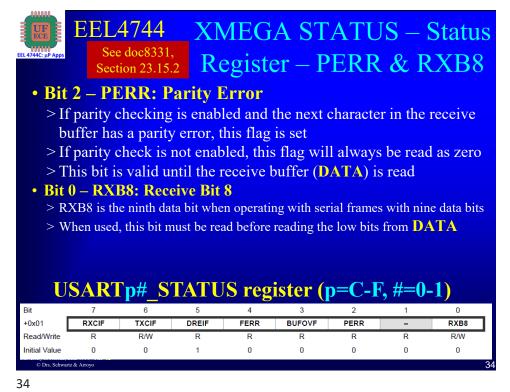

	744 loc8331, le 23-1	XMEGA Baud Rate Calculations				
Operating mode	Conditions	Baud rate ⁽¹⁾ calculation	BSEL value calculation			
Asynchronous normal speed mode (CLK2X = 0)	$BSCALE \ge 0$ $f_{BAUD} \le \frac{f_{PER}}{16}$	$f_{BAUD} = \frac{f_{PER}}{2^{BSCALE} \cdot 16(BSEL + 1)}$	$BSEL = \frac{f_{PER}}{2^{BSCALE}} \cdot 16f_{BAUD} - 1$			
special mode (OENZA - 0)	$BSCALE < 0$ $f_{BAUD} \le \frac{f_{PER}}{16}$	$f_{BAUD} = \frac{f_{PER}}{16((2^{BSCALE} \cdot BSEL) + 1)}$	$BSEL = \frac{1}{2^{BSCALE}} \left(\frac{f_{PER}}{16f_{BAUD}} - 1 \right)$			
Asynchronous double speed mode (CLK2X = 1)	$BSCALE \ge 0$ $f_{BAUD} \le \frac{f_{PER}}{8}$	$f_{BAUD} = \frac{f_{PER}}{2^{BSCALE} \cdot 8 \cdot (BSEL + 1)}$	$BSEL = \frac{f_{PER}}{2^{BSCALE} \cdot 8f_{BAUD}} - 1$			
speed mode (CLN2X – T)	$BSCALE < 0$ $f_{BAUD} \le \frac{f_{PER}}{8}$	$f_{BAUD} = \frac{f_{PER}}{8((2^{BSCALE} \cdot BSEL) + 1)}$	$BSEL = \frac{1}{2^{BSCALE}} \left(\frac{f_{PER}}{8f_{BAUD}} - 1 \right)$			
Synchronous and master SPI mode	$f_{BAUD} < \frac{f_{PER}}{2}$	$f_{BAUD} = \frac{f_{PER}}{2 \cdot (BSEL + 1)}$	$BSEL = \frac{f_{PER}}{2f_{BAUD}} - 1$			
© Drs. Schwartz & Arroyo			23			



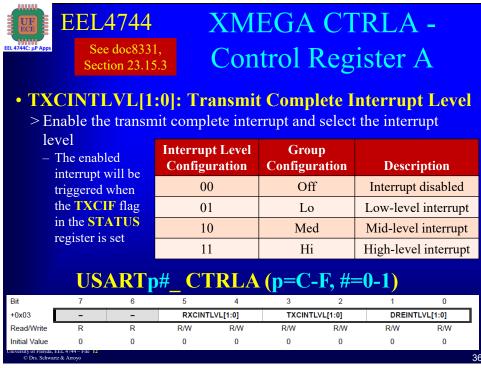


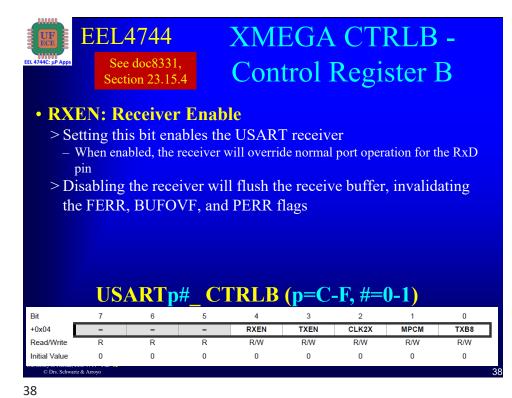


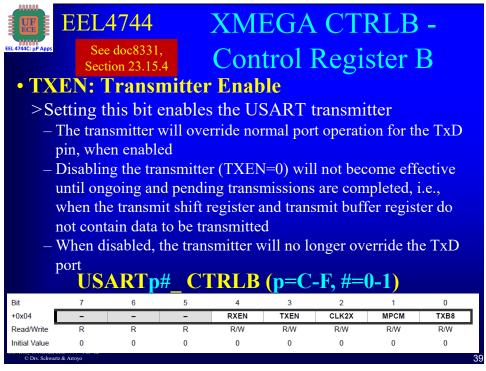


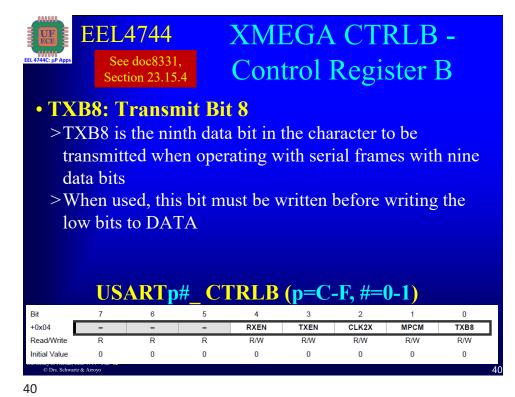


> In - - - - -	Section 5 – DRI dicates w 1 when th 0 when th been move DREIF is REIF is contracted	hether the ne transmi ne transmi ved into th s set after cleared by	ta Regis transmit t buffer is t buffer co e shift reg a reset to writing to	ster Em buffer (D empty ontains da gister indicate t D DATA	Reg pty Flag ATA) is re that to be tra that the tran	eady to reconsmitted	ceive new that has r ready	REIF v data
ro da —	utine mus ta registe If not, a r interrupt	et either w r empty ir new interr	rite new c nterrupt upt will o	lata to D A	ata register TA to clean thy after th	ar DREIF e return fr	or disat	ble the current
ro da —	utine mus ta registe If not, a r interrupt	et either w r empty ir new interr	rite new c nterrupt upt will o	lata to D A	TA to clea	ar DREIF e return fr	or disat	ble the current
ro da –	utine mus ta registe If not, a r interrupt SART	t either w r empty ir new interr p#_S	rite new c nterrupt upt will of TATU	lata to D A	TA to clear thy after th ister (]	ar DREIF e return fr D=C-F	or disat	ole the current -1)
ro da – UN Bit	utine mus ta registe If not, a r interrupt SART 7	it either w r empty in new interr p#_S	rite new c nterrupt upt will of TATU	lata to DA ccur direc I <mark>S reg</mark> 4	TA to clear the after th ister (] 3	ar DREIF e return fr D=C-F	or disat	ble the current -1)

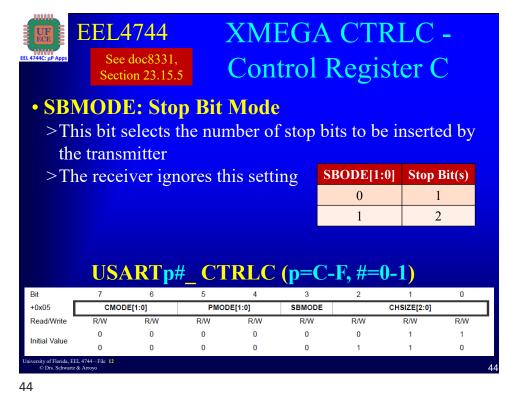


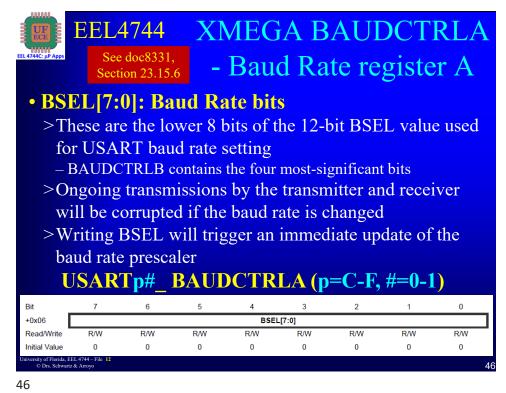


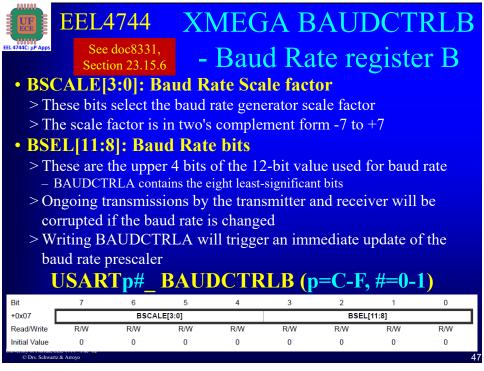



• RX(Secti	doc8331 ion 23.15 LVL[1	.3 :0]: Re	Con eceive	trol] Comple	Reg ete In	RLA ister terrupt the interr	A Level
	vel The enabl nterrupt v		Interrup Configu		Grou Configu	-	Descr	iption
	riggered		00)	Of	f	Interrupt	disabled
	he RXCI		0	1	Lo Med		Low-level interrup Mid-level interrup	
	n the ST		1()				
r	egister is	set	11		Hi		High-level interru	
	USA	ARTp	#_ C1	rrl a	(p=C)	- F , #=	=0-1)	
Bit	7	6	5	4	3	2	1	0
+0x03			LVL[1:0]		LVL[1:0]	DREINT R/W	R/W	
Read/write	Read/Write R R		R/W R/W		R/W R/W		R/W 0	R/W 0
University of Florida, EEI © Drs. Schwartz &		_		_		_	-	

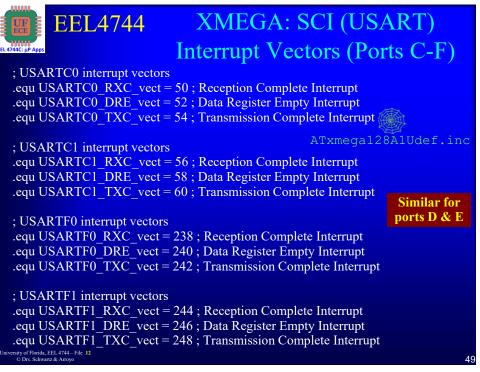

eL 4744C: µP Apps	Sect	doc8331 ion 23.15 / <mark>L[1:0]</mark> :	, .3 : Data]	Con Regist	trol I er Emp	Reg ty In	RLA ister . terrupt	A Level
	el he enabl iterrupt v		Interrup Configu		Grou Configu	-	Descr	iption
	iggered v		00		Off	f	Interrupt disabled Low-level interrup Mid-level interrupt	
	e DREI		01	1	Lo Med			
	the ST		1()				
re	gister is	set	11	1	Hi		High-leve	l interrupt
Bit	USA 7	ARTp	#_ C]	TRLA 4	(p=C -	-F, # =	= 0-1)	0
+0x03				LVL[1:0]	TXCINT			[LVL[1:0]
Read/Write	R	R	R/W	R/W	R/W	R/W	R/W	R/W
Initial Value Juiversity of Florida, EEL © Drs. Schwartz &		0	0	0	0	0	0	0

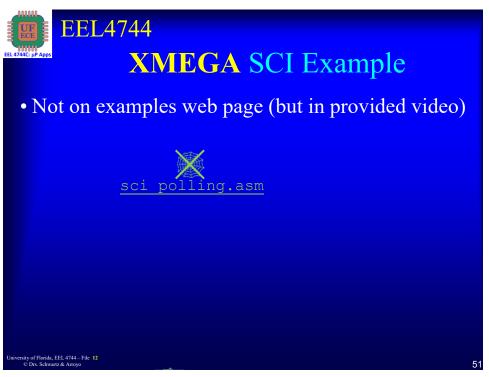



• CM	See Sect	4744 doc8331, ion 23.15.4 [1:0]: ts select	5 Com	Con [°] munic	trol atio	Re n M	egi ode		С
	CMO	ODE[1:0]	Group	Configur	ation		Mo	ode	
		00	As	ynchronou	ıs	Async	hron	ous USAR	T
		01	Sy	nchronou	s	Syncl	hrono	us USAR	Г
		10		IRCOM			IRC	ОМ	
		11		MSPI			Maste	er SPI	
USAR	Tp#	CTR	LC (p=C-I	7, #=	0-1)			
Bit	7	6	5	4	3		2	1	0
+0x05 +0x05 ⁽¹⁾		DE[1:0] DE[1:0]	PMO	DE[1:0]	SBMO	-		CHSIZE[2:0]	
Read/Write	R/W	R/W	R/W	R/W	R/W		R/W	R/W	R/W
Initial Value	0 0	0 0	0	0	0 0		0 1	1 1	1 0
© Drs. Schwartz &	4744 - Flic 12	č		č	5			·	



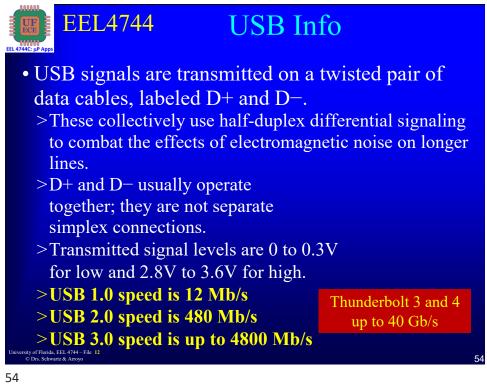
4744C: μP Apps	EEL47 See do Section	0c8331 23.15	.5	Con	trc			RL(
	PMODE[1	l:0] (Group Co	nfigurat	ion		Mode	e	
	00		Disabled			Disabled			
	01								
	10		Ev	ven		Enable	led, even parity		
	11		Odd			Enab	oled, odd	l parity	
Bit		RTp	•#_ <mark>CT</mark> ₅	'RLC 4		= C- 3	• F , #=	= 0-1)	0
+0x05	CMODE[1	•)E[1:0]		IODE		CHSIZE[2	•
Read/Write	R/W	R/W	R/W	R/W		/W	R/W	R/W	R/W
Initial Value	0 0	0 0	0 0	0 0		0 0	0 1	1 1	1 0
iversity of Florida, El © Drs. Schwartz									

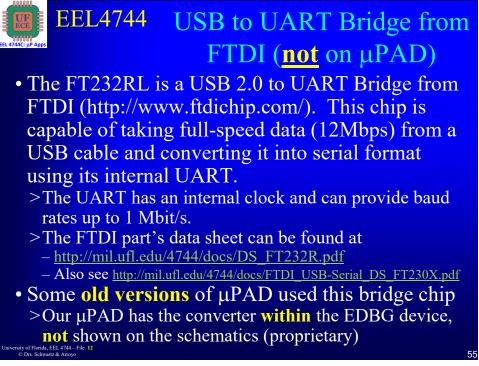

L4744C: µP Apps	See	4744 doc8331, ion 23.15.:				A CT Regi		
• CHS				CHSE	ZE[2:0]	Gro Configu	-	Character size
Cha	racte	er Size		000		5B	IT	5-bit
		ZE[2:0]	001		6BIT		6-bit	
	the number of data bits in					7B	IT	7-bit
	ame e receiv	ton on d		011		8B	IT	8-bit
		r use the	0.0400.0	100-110				
sett		r use me	same	1	11	9B	IT	9-bit
	USA	ARTp#	#_ CT]	RLC	(p=C	:- F , #=	-0-1)	
Bit	7	6	5	4	3	2	1	0
+0x05		DE[1:0]	PMODE	· ·	SBMODE		CHSIZE	·
Read/Write R/W R/W R/W				R/W	R/W	R/W	R/W	R/W
Initial Value	0 0	0 0	0 0	0 0	0 1	1 1	1 0	
niversity of Florida, EEL © Drs. Schwartz &								4

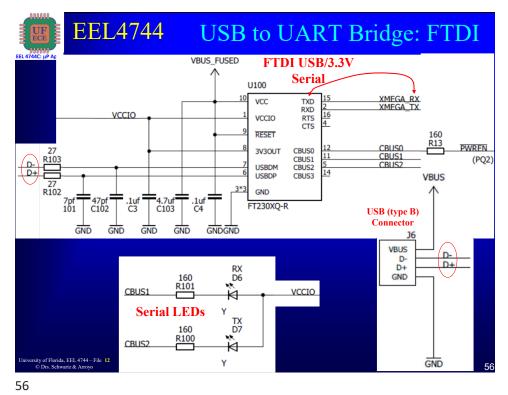

EEL 4744C: JP	EEL ee doc833 23.16, 2	1, Section	XMEGA USART Register Summary & Interrupt Vectors						
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
DATA	DATA[7:0]								
STATUS	RXCIF	TXCIF	DREIF	FERR	BUFOVF	PERR	-	RXB8	
Reserved	-	-	-	-	-	-	-	-	
CTRLA	-	-	RXCINT	[LVL[1:0]	TXCINT	'LVL[1:0]	DREINTLVL[1:0]		
CTRLB	-	-	-	RXEN	TXEN	CLK2X	MPCM	TXB8	
CTRLC	CMOD	DE[1:0]	PMOD	DE[1:0]	SBMODE		CHSIZE[2:0]		
BAUDCTRLA				BSE	L[7:0]				
BAUDCTRLB		BSCA	LE[3:0]			BSEL	.[11:8]		
Offset	Sourc	e	Interrupt desc	cription					
0x00	RXC_	vect	USART receiv	e complete inter	rrupt vector				
0x02	DRE_	vect	USART data re	egister empty in	terrupt vector				
0x04	TXC_\	vect	USART transm	nit complete inte	errupt vector				
© Drs. Schwar	rtz & Arroyo							48	

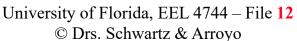
48

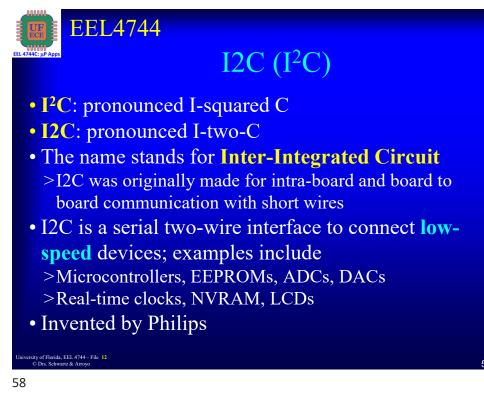
AT744C: µP AppsSee doc8385, Table 33-3Table 33-3. Port C - alternate functions.See also Tables 33-4 - 33-7										
PORT C	PIN#	INTERRUPT	TCC0 ⁽¹⁾⁽²⁾	AWEXC	TCC1	USARTC0 ⁽³⁾	USARTC1			
GND	13									
vcc	14									
PC0	15	SYNC	OC0A	OCOALS						
PC1	16	SYNC	OC0B	OCOAHS		XCK0				
PC2	17	SYNC/ASYNC	OC0C	OCOBLS		RXD0				
PC3	18	SYNC	OCOD	OCOBHS		TXD0				
PC4	19	SYNC		OC0CLS	OC1A					
PC5	20	SYNC		OC0CHS	OC1B		XCK1			
PC6	21	SYNC		OCODLS			RXD1			
PC7	22	SYNC		OC0DHS			TXD1			

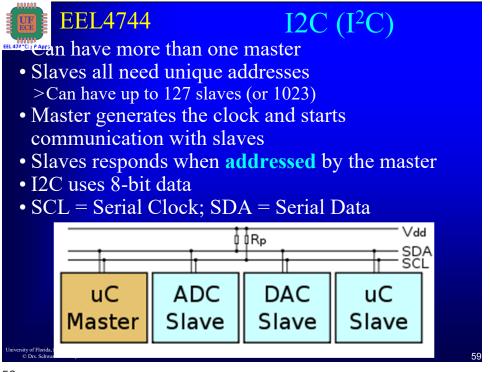

Serial Communication - Async

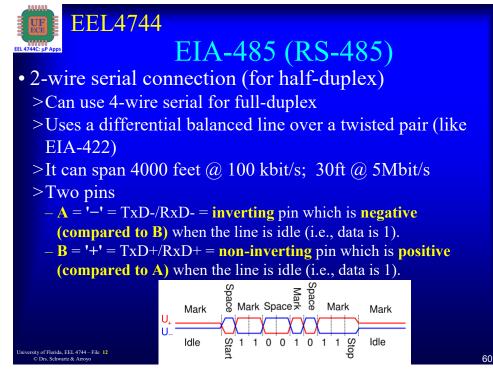



51

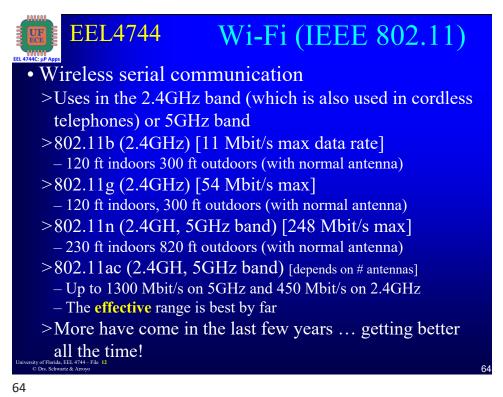




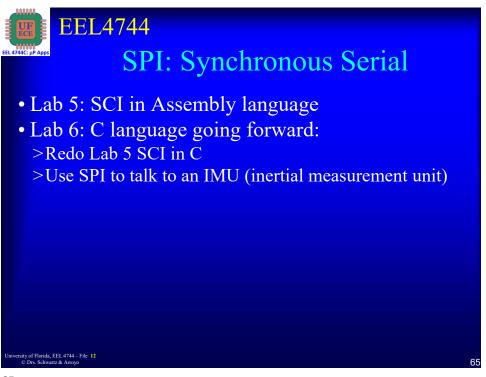




	EEL4744) USB	
EEL 4744C: μP Apps	See doc8385, Table 33-3 See also Tables 33-4 – 33-	On (our p	IPAD	
PD1 26 PD2 27 PD2 28 PD3 29	EDBG_USART_CDC_TX_U EDBG_USART_CDC_RX_U RED_PWM	SB Communic SB Communic		tD_ R xD0 rtD_TxD0	
PD4 <u>30</u> PD5 <u>31</u> PD6 <u>32</u> PD7	GREEN_PWM BLUE_PWM STATUS	EBI Device (
	EDBG_USART_CDC_T	UARI_RX	USB_D- USB_D+	HSUSB_D_N HSUSBD_P	
See u	PAD_v2.0_schematic		J	7 VBUS	
		USB (type B) Connector	VBUS D- D+ GND	HSUSBD_N HSUSBD_P	
University of Florida, © Drs. Schwa				GND	57



Serial Communication - Async



Serial Communication - Async

65

